
Position: Accessible Block-Based Programming:
Why and How

Lauren R. Milne
Department of Mathematics, Statistics and Computer Science

Macalester College
Saint Paul, MN, USA

lmilne@macalester.edu

Richard E. Ladner
Paul G. Allen School of Computer Science and Engineering

University of Washington
Seattle, WA, USA

ladner@cs.washington.edu

Abstract—Block-based programming environments are very
popular for introducing children to programming. Unfortunately,
they are not accessible to many children with visual or motor
impairments. In this paper we outline why block-based
environments should be made accessible for these children,
describe current efforts to make environments accessible, and
describe how developers can incorporate accessibility into their
own block-based programming environments.

Keywords—accessibility, motor impairments, visual
impairments, aria, user interface design

I. INTRODUCTION

There is little question that block-based programming
environments (BBPEs) are a huge success internationally in
getting children engaged with programming and computational
thinking [1]. Scratch alone has more than 40 million projects on
its website [2]. Although there are BBPEs for Wonder
Workshop robots and Arduino, the primary outputs for BBPEs
are audiovisual animations. Several groups of children are not
served well by BBPEs, namely, those who are blind and those
who have mobility related disabilities. Generally, BBPEs are not
screen reader accessible for blind children both in terms of
creating programs and viewing their outputs. Children with
limited use of their hands are not able to create and edit programs
because standard interactions like drag-and-drop are not
accessible to them. Generally, BBPEs are not switch accessible
for children with severely limited use of their hands.

The purpose of this position paper is to encourage the
creators of BBPEs to reengineer their BBPEs to be accessible in
order to meet the needs of all children, including those with
disabilities. Building on the 2015 position paper by Stephanie
Ludi [3], we describe current research around the accessibility
of BBPEs and provide suggestions for developers to implement
accessibility in their own BBPEs.

II. DEMOGRAPHICS

According to the National Center for Education Statistics
(NCES, Table 204.50) about 7 million US children, ages 3 to 21,
are served under the Individuals with Disabilities Education Act
(IDEA), Part B. This is about 13.7% of all children in the US in
this age group. Of these, about 27,000 have visual impairments.
A smaller number have mobility related disabilities that hamper
their use of the mouse and keyboard and may necessitate using
switch access. In addition to these students under IDEA, there is
another group of students with disabilities, about one million
that are served under Section 504 of the Rehabilitation Act. An

unknown number of these may have visual impairments or
mobility related disabilities. Under these laws a school district
that does not provide proper access for a child with a disability
risks civil actions or law suits to remedy the lack of access. Our
position on access rests on equity not possible penalties.

III. EQUITY

Many of us who work in K-12 computer science education
believe that equity is a major goal of our work [4]. To us, equity
means providing maximum opportunity and necessary supports
for children to participate in computer science courses and non-
school activities to all children regardless of gender, race,
ethnicity, disability, and other factors.

The majority of children with disabilities are educated in
mainstream classrooms (close to 95% of students with
disabilities attend regular schools) [5]. Designing BBPEs to be
universally accessible would allow these students to have equal
access to the same curriculum that their peers are using and
allow them to collaborate and share their work with their peers.

Many of the underlying concepts which make BBPEs easier
for students without disabilities to learn would likely extend to
children with disabilities as well. For example, it is nearly
impossible to make syntax errors in BBPEs. This is because
blocks are only allowed to be placed in syntactically valid
locations, and there are no semicolons or braces (structural cues
that can be especially challenging to keep track of with a screen
reader). Additionally, having a toolbox with all the possible
blocks allows one to search through valid statements and
expressions in the language instead of having to remember the
names and syntax. Finally, the code structure of the program is
communicated spatially, which makes it easier to understand the
nesting structure of the code. It may seem like this spatial
information would not be useful for people with visual
impairments, but current research has looked at conveying this
spatial structure with screen readers through touchscreen
devices [6] or keyboard navigation [7]–[9]. In fact, Schanzer et
al. actually created a tool to convert text-based code into block-
based code to improve navigation for blind programmers [10].

IV. TOOLS FOR ACCESSIBILITY

Fortunately, there are accessibility supports in place on
Windows PCs and Apple computers, as well as Android and
Apple tablets, for blind and visually impaired users (screen
readers and magnification) and for users with mobility related
disabilities (switch access and other supports). Some of these are
built into Windows PC and Apple computers and some are

2019 IEEE Blocks and Beyond Workshop

19978-1-7281-4849-6/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 04,2020 at 21:44:47 UTC from IEEE Xplore. Restrictions apply.

provided by third parties. To create an accessible native BBPE
developers need to follow the accessibility guidelines and tools
provided for the different operating systems and for web-based
content [11]–[14].

A. Screen readers

A screen reader is a software application that allows a user
to read and navigate a computer screen without vision. They can
be used on both computers and touchscreen-based smartphones
or tablets. Screen readers can come built-in on devices (e.g.
VoiceOver for macOS and iOS, TalkBack for Android) or are
available through third-party developers (e.g. JAWS and NVDA
for Windows PCs). Someone using a screen reader can use the
keyboard or touch to change the focus of a screen reader to
different elements on the screen. The items that are focused on
by the screen reader are either read aloud or read on a refreshable
Braille display. If the focused item is interactive (e.g. a button,
link, adjustable control) the user can interact with it via various
keyboard commands or touch gestures. This means it is
important that any application or document provide structured
information that can easily be navigated by the screen reader
(e.g. headers in a webpage or document) and clearly give
information about what interactive elements are (e.g. button or
slider), as well as give an accessible way to interact with them.

B. Magnification Software
For people with visual impairments who still have limited

vision, there are magnification tools. For most operating systems
(including tablets), there are built-in zoom controls that allow
one to zoom in using all or part of the screen. There are also
third-party tools such as ZoomText, which gives the user a great
deal of flexibility in setting the magnification and has screen
reading capabilities [15], and Fusion, which is a combination of
the JAWS screen reader and ZoomText magnifier [16]. To
ensure an application works for someone who has low vision,
developers should ensure that the application works with these
magnification tools, that there is sufficient color contrast and
that text-size can be increased.

C. Switch Control and Keyboard Navigation
There are many types of technology that can be used to allow

someone with motor impairments to use computers [17]. Many
of the devices allow users to interact with a computer or tablet
using a standard or adaptive keyboard in place of a mouse. As
keyboard navigation can be used by both people who are blind
and those who have motor impairments, it is important for
developers to create alternatives for interactions that rely on
mouse or touch input (e.g. drag and drop). Someone with very
limited use of their hands might use different types of single-
switch controls to interact with a computer or tablet. For
example, a commonly used switch is a large button that someone
with limited hand mobility could press with their head. This type
of switch control allows a user to give limited (potentially only
binary) input to a computer, so it works with software on the
computer to use this input to select or interact with elements on
the screen. For example, on iOS, you can set up switch control
to cycle over the “focusable” elements on the screen, and you
can use the switch to select an item when it is in focus. To make
an application work with switch control, it is important for
developers to ensure that the elements on the screen can be read

by the Accessibility API, and that they are presented in a
navigation order that makes sense.

V. PROGRESS ON ACCESSIBLE COMPUTING ENVIRONMENTS

A. Born Accessible
There has been some notable progress over the past ten years

in making computer science more accessible, but very little on
making BBPEs accessible. One approach to accessibility in
programming environments is to make it accessible from the
get-go, that is, make the environment what we call “born
accessible.” Examples of born accessible programming
environments are Apple’s Swift Playgrounds [18], Microsoft
Research’s Code Jumper (formally Torino) [19], [20], and
StoryBlocks [21]. Swift Playgrounds has a hybrid programming
environment that includes a drag-and-drop method and text-
entry method for creating and editing programs. The output is
an animation, but can be audio-described for a blind user. Code
Jumper is a physical environment for creating programs using
pods that connect together. The output for Code Jumper is
strictly auditory: music, stories, and jokes. StoryBlocks is a
BBPE that uses physical blocks to create and edit programs. The
program created with blocks is captured with a camera and
interpreted to yield a working program on a separate computer.

The Quorum programming language [22] is a text-based
language that was born accessible. Its syntax and semantics have
been tested for learnability using randomized controlled
experiments. As a result, the syntax is far less arcane than most
programming languages, making it less intimidating when first
encountered. For example, the language has no curly braces, no
semicolons, and key words and phrases use a simple vocabulary.
A new IDE for Quorum will be announced in fall 2019 that is
screen reader accessible.

Figure 1: Blocks4All Programming Environment. The code reads: Make
Buzzing Noise. Then the robot will turn left 90 degrees 2 times. On the left
side of the screen, the menu of blocks to change the robot’s lights is shown.

One born accessible BBPE, called Blocks4All, has been
developed and studied recently by the authors (Fig. 1) [6]. The
environment is implemented for iPads, with the output being
commands to a Dash robot [23]. We chose the iPad because its
popular VoiceOver screen reader that already familiar to many
blind children. We chose a robot output because it is tactile and
auditory (moves and makes sounds). The programming interface
replaces inaccessible drag-and-drop with a more accessible way
to create and edit programs.

20

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 04,2020 at 21:44:47 UTC from IEEE Xplore. Restrictions apply.

B. Made To Be Accessible
It can be challenging to reengineer an existing BBPE to

make it accessible. For example, Stephanie Ludi started a project
several years ago to make a programming environment for
Blockly accessible [7]. Blockly is a library from Google for
building beginner-friendly block-based programming
languages, which can be integrated into programming
environment. Her approach, aimed at the standard desktop
Blockly programming environment, is to define keyboard
shortcuts to help create, edit, and navigate Blockly programs.
These shortcuts must be compatible with standard screen reader
shortcuts. The project is still on-going. Other examples
educational environments that were not born accessible, but are
in the process of becoming so, are Bootstrap [10] and PHET
[24]. Both of these efforts have been major undertakings. The
Blockly team at Google is working toward incorporating
keyboard navigation in their next release and also plan to add
screen reader compatibility, thereby making any BBPEs built
using the library much closer to being accessible. Additionally,
Schanzer et al. have released a toolkit that can be integrated into
any programming environment built on the CodeMirror library
to generate a navigable, accessibility-enabled abstract syntax
tree view of code [10].

VI. MAKING AN ACCESSIBLE ENVIRONMENT

The first step in making an accessible environment is to
adhere to the current standards for accessibility: web-based
BBPES should follow the WCAG 2.0 AA standards [14], and
native tablet applications should follow the Apple [12] and
Android [13] accessibility guidelines. At a minimum, this means
that they should ensure (1) that all the elements are perceivable
by technology such as a screen reader (e.g. blocks should be
properly labeled and (2) that it is possible to perform all
operations using a keyboard (e.g. they should provide an
alternative to drag and drop). These changes should make their
BBPE more accessible for someone with motor impairments or
some vision. To ensure that the BBPE is fully accessible for
someone who is blind, it is important to make sure that the
screen reader navigates the environment in an understandable
manner and gives good feedback. This can be challenging, and
we describe some of the challenges that we have encountered
below in our work.

A. Blockly Touchscreen Environment
In earlier work on Blocks4All, a born-accessible

touchscreen environment [6], we discuss some of the
challenges that exist around making BBPEs accessible for
people with visual and motor impairments. We focus on the
three main ones:

1. accessing elements (e.g. accessing the blocks and
input fields),

2. presenting structural information about the blocks
(e.g. the nesting structure of the program), and

3. moving blocks
Below, we briefly discuss our current work on making
touchscreen interaction with the Blockly library more
accessible, and our approaches to overcoming these problems.
We chose to focus on the interaction with Blockly on a
touchscreen device based on our previous work with

Blocks4All and to complement other research [7]. We discuss
some of the challenges we have encountered “adding on”
accessibility to an existing web-based environment.

B. Accessing Elements
In Blockly, blocks are represented as Scalable Vector

Graphics (SVG) elements. These can be made accessible to
screen readers with WAI-ARIA tags; however, the irregular
shape of the blocks leads to some challenges using this
approach. First, selecting an SVG element with a screen reader
on leads to a pointer event in the “center” of the element. In the
case of structural blocks such as for loops or conditional
statements, this will often result in selecting a contained block
or empty space. Second, the irregular shape of blocks makes it
difficult to find blocks and determine their relationship without
sight. Because of these challenges, we are experimenting with
using other elements to represent the blocks (e.g. rectangles
overlaid on top of the blocks or list elements placed elsewhere
which can more easily be navigated with a screen reader).

C. Presenting Structural Information
The structure of blocks-based programs is traditionally

conveyed via the spatial layout of the blocks (e.g. contained
blocks are placed inside other blocks). Other researchers have
explored using a screen reader with a keyboard to navigate the
hierarchical structure much like a hierarchical list [7], [10]. We
are exploring ways to explore this hierarchy using a
touchscreen; however, the irregular shapes of the blocks make
it difficult to understand complex code. Once again, we are
exploring ways to change the representation of the blocks
presented to the screen reader to make this easier.

D. Moving Blocks
The drag and drop technique traditionally used to construct

block-based programs is challenging to perform with a screen
reader. In our and other researchers’ work [6], [7], this is
replaced with a two-part process, in which you select (1) a block
and (2) a connection point in order to place the block. This
means that connection points (i.e. the puzzle tabs) must be made
“selectable” with a screen reader. Additionally, it has to be
clearly communicated by the screen reader when a block or
connection point has been selected.

VII. CONCLUSION

In this position paper, we argue that BBPE developers
should consider making their environments accessible, and we
present current research on making these environments
accessible. As we acknowledge that this can be challenging, we
highly recommend hiring people who know how to do this, as
opposed to using just consultants. Additionally, the people with
the most expertise around these access technologies are people
with disabilities. We recommend adding people with disabilities
to your team.

VIII. ACKNOWLEDGMENTS

Our work on the Blockly library is funded by a CS-ER grant
from Google LLC and NSF grant numbers CNS-1738252 and
CNS-1738259.

21

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 04,2020 at 21:44:47 UTC from IEEE Xplore. Restrictions apply.

REFERENCES [12] “Accessibility - Apple Developer.” [Online]. Available:
https://developer.apple.com/accessibility/. [Accessed: 27-Jun-2019].

[13] “Accessibility overview,” A ndroid Developers. [Online]. Available:
https://developer.android.com/guide/topics/ui/accessibility.
[Accessed: 27-Jun-2019].

[14] w3c_wai, “Web Content Accessibility Guidelines (WCAG)
Overview,” Web Accessibility Initiative (WAI). [Online]. Available:
https://www.w3.org/WAI/standards-guidelines/wcag/. [Accessed:
27-Jun-2019].

[15] “ZoomText Magnifier - zoomtext.com.” [Online]. Available: https://
www.zoomtext.com/products/zoomtext-magnifier/. [Accessed:
27-Jun-2019].

[16] “Fusion Professional - zoomtext.com.” [Online]. Available: https://
www.zoomtext.com/products/zoomtext-fusion/. [Accessed: 27-
Jun-2019].

[17] “WebAIM: Motor Disabilities - Assistive Technologies.” [Online].
Available: https://webaim.org/articles/motor/assistive. [Accessed:
27-Jun-2019].

[18] “Swift Playgrounds - Apple.” [Online]. Available: https://
www.apple.com/swift/playgrounds/. [Accessed: 27-Jun-2019].

[19] “Code Jumper.” [Online]. Available: https://codejumper.com/.
[Accessed: 27-Jun-2019].

[20] C. Morrison et al. “Torino: A Tangible Programming Language
Inclusive of Children with Visual Disabilities,” Human–Computer
Interact, 2018. https://doi.org/10.1080/07370024.2018.1512413.

[21] V. Koushik, D. Guinness, and S. K. Kane, “StoryBlocks: A Tangible
Programming Game To Create Accessible Audio Stories,” in
Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, New York, NY, USA, 2019, pp. 492:1–492:12.

[22] “The Quorum Programming Language.” [Online]. Available:
https://quorumlanguage.com/. [Accessed: 27-Jun-2019].

[23] “Wonder Workshop | Home of cue, Dash and Dot, robots that help
kids learn to code.” [Online]. Available:
https://www.makewonder.com/. [Accessed: 27-Jun-2019].

[24] T. L. Smith, C. Lewis, and E. B. Moore, “A Balloon, a Sweater, and a
Wall: Developing Design Strategies for Accessible User Experiences
with a Science Simulation,” in Universal Access in Human-Computer
Interaction. Users and Context Diversity, 2016, pp. 147–158.

[1] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak, “Learnable
Programming: Blocks and Beyond,” Commun ACM, vol. 60, no. 6, pp.
72–80, May 2017.

[2] “Scratch - Imagine, Program, Share.” [Online]. Available:
https://scratch.mit.edu/. [Accessed: 27-Jun-2019].

[3] S. Ludi, “Position Paper: Towards Making Block-based Programming
accessible for blind users,” in 2015 IEEE Blocks and Beyond Workshop
(Blocks and Beyond), 2015, pp. 67–69.

[4] ichard E. Ladner and Maya Israel, “ For All in Computer Science
for All, ” Commun. ACM, vol. 59, no. 9, pp. 26–28, Aug. 2016.

[5] U.S. Department of Education, National Center for Education
Statistics, “Digest of Education Statistics, 2017,” NCES 2018-070.

[6] L. . Milne and . E. Ladner, “Blocks4All: Overcoming Accessibility
Barriers to Blocks Programming for Children with Visual
Impairments,” in Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, New York, NY, USA, 2018, pp. 69:1–
69:10.

[7] S. Ludi and M. Spencer, “Design Considerations to Increase Block-
based Language Accessibility for Blind Programmers Via Blockly,”
J. Vis. Lang. Sentient Syst., vol. 3, no. 1, pp. 119–124, Jul. 2017.

[8] V. Koushik and C. Lewis, “An Accessible Blocks Language: Work in
Progress,” in Proceedings of the 18th International ACM SIGACCESS
Conference on Computers and Accessibility, New York, NY, USA,
2016, pp. 317–318.

[9] “Accessible Blockly Demo.” [Online]. Available: https://blockly-
demo.appspot.com/static/demos/accessible/index.html. [Accessed:
27-Jan-2019].

[10] E. Schanzer, S. Bahram, and S. Krishnamurthi, “Accessible AST-
Based Programming for Visually-Impaired Programmers,” in
Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, New York, NY, USA, 2019, pp. 773–779.

[11] Microsoft, “Developing accessible applications – Windows app
development.” [Online]. Available: https://developer.microsoft.com/en-
us/windows/accessible-apps. [Accessed: 27-Jun-2019].

22

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 04,2020 at 21:44:47 UTC from IEEE Xplore. Restrictions apply.

